Cart (Loading....) | Create Account
Close category search window
 

Measurement and modeling of the millimeter-wave backscatter response of soil surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nashashibi, A. ; Radiation Lab., Michigan Univ., Ann Arbor, MI, USA ; Ulaby, F.T. ; Sarabandi, K.

The millimeter-wave (MMW) backscatter response of bare-soil was examined by conducting experimental measurements at 35 and 94 GHz using a truck-mounted polarimetric scatterometer and by developing appropriate models to relate the backscattering coefficient to the soil's surface and volume properties. The experimental measurements were conducted for three soil surfaces with different roughnesses under both dry and wet conditions. The experimental measurements indicate that in general the backscattering coefficient is comprised of a surface scattering component σs and a volume scattering component σ v. For wet soil conditions, the backscatter is dominated by surface scattering, while for dry conditions both surface and volume scattering are significant, particularly at 94 GHz. Because theoretical surface scattering models were found incapable of predicting the measured backscatter, a semiempirical surface scattering model was developed that relates the surface scattering component of the total backscatter to the roughness parameter ks, where k=2π/λ and s is the rms height, and the dielectric constant of the soil surface. Volume scattering was modeled using radiative transfer theory with the packed soil particles acting as the host material and the air voids as the scattering particles. The combined contribution of surface and volume scattering was found to provide good agreement between the model calculations and the experimental observations

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:34 ,  Issue: 2 )

Date of Publication:

Mar 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.