Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Optimal survey design using focused resistivity arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cherkaeva, E. ; Dept. of Geol. & Geophys., Utah Univ., Salt Lake City, UT, USA ; Tripp, Alan C.

The first problem which needs to be solved when planning any geoelectrical survey is a choice of a particular electrode configuration that can give the maximal response from a target inhomogeneity. The authors formulate a problem of maximizing the response as an optimization problem for an applied current intensity distribution on the surface. The solution of this problem is the optimal intensity distribution of the current, which maximizes the response from the inclusion. This problem is solved numerically with singular value decomposition of an impedance matrix. The optimal current array is modeled as a current of varying optimal intensity injected at different electrodes. The problem does not need any information about the inclusion but its measured impedance matrix. Thus an optimal current array can be designed for every particular resistivity distribution. The optimal current patterns are found for a number of models of a conductive inclusion, and responses due to the optimal current are compared with responses due to conventional arrays. This method can be applied to any background and inclusion resistivity distribution

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:34 ,  Issue: 2 )