By Topic

Multiple response learning automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Economides, A.A. ; Univ. of Macedonia, Thessaloniki, Greece

Learning Automata update their action probabilites on the basis of the response they get from a random environment. They use a reward adaptation rate for a favorable environment's response and a penalty adaptation rate for an unfavorable environment's response. In this correspondence, we introduce Multiple Response learning automata by explicitly classifying the environment responses into a reward (favorable) set and a penalty (unfavorable) set. We derive a new reinforcement scheme which uses different reward or penalty rates for the corresponding reward (favorable) or penalty (unfavorable) responses. Well known learning automata, such as the LR-P;LR-I; LR-eP are special cases of these Multiple Response learning automata. These automata are feasible at each step, nonabsorbing (when the penalty functions are positive), and strictly distance diminishing. Finally, we provide conditions in order that they are ergodic and expedient

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:26 ,  Issue: 1 )