By Topic

Nonlinear system identification using a Gabor/Hopfield network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhang, C.Q. ; Dept. of Electr. Eng., Nevada Univ., Reno, NV, USA ; Fadali, M.S.

This paper presents a method of nonlinear system identification using a new Gabor/Hopfield network. The network can identify nonlinear discrete-time models that are affine linear in the control. The system need not be asymptotically stable but must be bounded-input-bounded-output (BIBO) stable for the identification results to be valid in a large input-output range. The network is a considerable improvement over earlier work using Gabor basis functions (GBF's) with a back-propagation neural network. Properties of the Gabor model and guidelines for achieving a global error minimum are derived. The new network and its use in system identification are investigated through computer simulation. Practical problems such as local minima, the effects of input and initial conditions, the model sensitivity to noise, the sensitivity of the mean square error (MSE) to the number of basis functions and the order of approximation, and the choice of forcing function for training data generation are considered

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:26 ,  Issue: 1 )