By Topic

Reorganizing knowledge in neural networks: an explanatory mechanism for neural networks in data classification problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hiroshi Narazaki, ; Process Technol. Res. Lab., Kobe Steel Ltd., Japan ; Watanabe, T. ; Yamamoto, M.

We propose an explanatory mechanism for multilayered neural networks (NN). In spite of the effective learning capability as a uniform function approximator, the multilayered NN suffers from unreadability, i.e., it is difficult for the user to interpret or understand the “knowledge” that the NN has by looking at the connection weights and thresholds obtained by backpropagation (BP). This unreadability comes from the distributed nature of the knowledge representation in the NN. In this paper, we propose a method that reorganizes the distributed knowledge in the NN to extract approximate classification rules. Our rule extraction method is based on the analysis of the function that the NN has learned, rather than on the direct interpretation of connection weights as correlation information. More specifically, our method divides the input space into “monotonic regions” where a monotonic region is a set of input patterns that belongs to the same class with the same sensitivity pattern. Approximate classification rules are generated by projecting these monotonic regions

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:26 ,  Issue: 1 )