By Topic

An automatic indexing and neural network approach to concept retrieval and classification of multilingual (Chinese-English) documents

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chung-Hsin Lin ; Dept. of Manage. Inf. Syst., Arizona Univ., Tucson, AZ, USA ; Hsinchun Chen

An automatic indexing and concept classification approach to a multilingual (Chinese and English) bibliographic database is presented. We introduced a multi-linear term-phrasing technique to extract concept descriptors (terms or keywords) from a Chinese-English bibliographic database. A concept space of related descriptors was then generated using a co-occurrence analysis technique. Like a man-made thesaurus, the system-generated concept space can be used to generate additional semantically-relevant terms for search. For concept classification and clustering, a variant of a Hopfield neural network was developed to cluster similar concept descriptors and to generate a small number of concept groups to represent (summarize) the subject matter of the database. The concept space approach to information classification and retrieval has been adopted by the authors in other scientific databases and business applications, but multilingual information retrieval presents a unique challenge. This research reports our experiment on multilingual databases. Our system was initially developed in the MS-DOS environment, running ETEN Chinese operating system. For performance reasons, it was then tested on a UNIX-based system. Due to the unique ideographic nature of the Chinese language, a Chinese term-phrase indexing paradigm considering the ideographic characteristics of Chinese was developed as a multilingual information classification model. By applying the neural network based concept classification technique, the model presents a novel way of organizing unstructured multilingual information

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:26 ,  Issue: 1 )