Cart (Loading....) | Create Account
Close category search window
 

Dynamically focused fuzzy learning control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kwong, W.A. ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Passino, K.M.

A “learning system” possesses the capability to improve its performance over time by interacting with its environment. A learning control system is designed so that its “learning controller” has the ability to improve the performance of the closed-loop system by generating command inputs to the plant and utilizing feedback information from the plant. Learning controllers are often designed to mimic the manner in which a human in the control loop would learn how to control a system while it operates. Some characteristics of this human learning process may include: (i) a natural tendency for the human to focus their learning by paying particular attention to the current operating conditions of the system since these may be most relevant to determining how to enhance performance; (ii) after learning how to control the plant for some operating condition, if the operating conditions change, then the best way to control the system may have to be re-learned; and (iii) a human with a significant amount of experience at controlling the system in one operating region should not forget this experience if the operating condition changes. To mimic these types of human learning behavior, we introduce three strategies that can be used to dynamically focus a learning controller onto the current operating region of the system. We show how the subsequent “dynamically focused learning” (DFL) can be used to enhance the performance of the “fuzzy model reference learning controller” (FMRLC) and furthermore we perform comparative analysis with a conventional adaptive control technique. A magnetic ball suspension system is used throughout the paper to perform the comparative analyses, and to illustrate the concept of dynamically focused fuzzy learning control

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:26 ,  Issue: 1 )

Date of Publication:

Feb 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.