By Topic

Stochastic models for DIV-CURL optical flow methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gupta, S.N. ; Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA ; Prince, J.L.

We consider Suter's (see Proc. CVPR94, Seattle, p.939-948, 1994) DIV-CURL optical flow methods, wherein the problem of computing a velocity field from an image sequence is regularized using smoothness conditions based on the divergence and curl of the field. In particular, we develop stochastic formulations of DIV-CURL splines using the linear smoothing theory of Adams, Willsky, and Levy. Our models are shown to be well posed and thus can be used in both simulating and estimating velocity fields having known stochastic properties. As a special case, our stochastic model reduces to that developed by Rougee, Levy, and Willsky (1984) for the classical Horn and Schunck's (1981) optical flow.

Published in:

Signal Processing Letters, IEEE  (Volume:3 ,  Issue: 2 )