Cart (Loading....) | Create Account
Close category search window

Thermal-Aware Global Real-Time Scheduling on Multicore Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fisher, N. ; Dept. of Comput. Sci., Wayne State Univ., Detroit, MI ; Jian-Jia Chen ; Shengquan Wang ; Thiele, L.

As the power density of modern electronic circuits increases dramatically, systems are prone to overheating. Thermal management has become a prominent issue in system design. This paper explores thermal-aware scheduling for sporadic real-time tasks to minimize the peak temperature in a homogeneous multicore system, in which heat might transfer among some cores. By deriving an ideally preferred speed for each core, we propose global scheduling algorithms which can exploit the flexibility of multicore platforms at low temperature. Compared with load-balancing strategies, the proposed algorithms can significantly reduce the peak temperature by up to 30degC to 70degC for simulated platforms.

Published in:

Real-Time and Embedded Technology and Applications Symposium, 2009. RTAS 2009. 15th IEEE

Date of Conference:

13-16 April 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.