Cart (Loading....) | Create Account
Close category search window
 

Determination of Refractive Indices From the Mode Profiles of UV-Written Channel Waveguides in {\hbox {LiNbO}}_{3} -Crystals for Optimization of Writing Conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ganguly, P. ; Optoelectron. Res. Center, Univ. of Southampton, Southampton, UK ; Sones, C.L. ; Youngjin Ying ; Steigerwald, H.
more authors

We report on a method for the simultaneous determination of refractive index profiles and mode indices from the measured near-field intensity profiles of optical waveguides. This method has been applied to UV-written single-mode optical waveguides in LiNbO3 for the optimization of the writing conditions. The results for the waveguides written with light of the wavelengths 275, 300.3, 302, and 305 nm for different writing powers and scan speeds reveal that for optimum writing conditions a maximum possible refractive index change of ~0.0026 can be achieved at a value of 632.8 nm transmitting wavelength. The computation process used in the presented technique may also become useful to extract absolute refractive index values of any slowly varying graded index waveguide.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 16 )

Date of Publication:

Aug.15, 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.