By Topic

Cellular Neural Network Algorithms for Real-Time Image Analysis in Plasma Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Guido Vagliasindi ; Dept. of Electr., Electron. & Syst. Eng. (DIEES), Univ. of Catania, Catania, Italy ; Andrea Murari ; Paolo Arena ; Luigi Fortuna
more authors

In modern tokamaks, visible and infrared video cameras are becoming more and more important in monitoring plasma evolution during fusion experiments. Analyzing these images in real time can provide relevant information for controlling plasma and improving machine safety. The real-time image processing capability of the cellular nonlinear/neural network-based chips that are available nowadays has been applied to several tasks, both at Frascati Tokamak Upgrade (FTU) and at Joint European Torus (JET). The successful applications range from the identification of plasma instabilities, such as multifaceted asymmetric radiations from the edge (MARFEs), to the determination of the strike-point position in the divertor and to the detection of the so-called ldquohot spots.rdquo

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:58 ,  Issue: 8 )