By Topic

Ultra-Fast Gain Recovery and Compression Due to Auger-Assisted Relaxation in Quantum Dot Semiconductor Optical Amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Omar R. Qasaimeh ; Dept. of Electr. Eng., Jordan Univ. of Sci. & Technol., Irbid, Jordan

The ultra-fast gain dynamics in quantum-dot semiconductor optical amplifiers (QD-SOAs) have been studied for different types of Auger-assisted relaxation processes. The ultra-fast gain recovery time and gain compression are studied for p-type doped and un-doped QD-SOAs using rate equation model. Our calculations show that the ultra-fast gain dynamics is governed by electron-electron Auger-assisted process for un-doped QD-SOA and by electron-hole Auger-assisted process for p-type doped (NA=1.25times1018 cm-3) QD-SOA. We find that the ultra-fast gain recovery time for un-doped QD-SOA is comparable with that of p-type doped QD-SOA when both electron hole and electron-electron processes present in the active region. We find that the percentage of ultra-fast gain compression in un-doped QD-SOA is limited to ~ 72%. While for p-type doped (NA=1.25times1018 cm-3) QD-SOA, we find that the percentage of ultra-fast gain compression increases as the applied current increases where it can reach >95% at very high applied current.

Published in:

Journal of Lightwave Technology  (Volume:27 ,  Issue: 13 )