Cart (Loading....) | Create Account
Close category search window
 

A Standing-Wave Model Based on Threshold Hot-Cavity Modes for Simulation of Gain-Coupled DFB Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yanping Xi ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON, Canada ; Huang, Wei-Ping ; Xun Li

A time-domain standing-wave model is proposed and developed to analyze the gain-coupled DFB laser. In this model, the optical field is decomposed into a set of eigenmodes, which are longitudinal cavity modes obtained when the laser is biased near threshold, i.e., threshold "hot-"cavity modes. As such, the spatial and temporal dependence of the optical field is separated with optical modes describing the spatial dependence and their amplitudes governing the temporal evolution of the field. Important effects such as the variation of the coupling coefficient with the injection level and the spatial hole burning can all be taken into account.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 17 )

Date of Publication:

Sept.1, 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.