By Topic

Moment-Generating Function Method Used to Evaluate the Performance of a Linear Optical Communication System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liang Chen ; Dept. of Phys., Univ. of Ottawa, Ottawa, ON, Canada ; Zhongxi Zhang ; Xiaoyi Bao

The moment-generating function (MGF) of the received photoelectric current is evaluated for a linear optical communication system consisting of distributed amplified spontaneous emission (ASE), polarization-mode dispersion (PMD), and polarization dependent loss (PDL). Using this function, optical performance characterization based on the bit error rate (BER), Q-factor, and signal-to-noise ratio (SNR), can be evaluated. As an example of the applicability to binary differential phase-shift keying (DPSK) systems with defined PDL, the BER results predicted by linked model and lumped model are compared. Our results indicate that the difference can be orders of magnitude when the PDL is larger than 2.5 dB. Additionally, random PDL induced statistical feature of the BER is entirely different for these two models. Finally, relations between the statistical variations of other performance parameters ( Q-factor and SNR) and link model parameters (input signal polarization, average PDL value, and link number K) are also investigated.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 16 )