By Topic

Discrete Multitone Modulation for Maximizing Transmission Rate in Step-Index Plastic Optical Fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Lee, S.C.J. ; COBRA Res. Inst., Eindhoven Univ. of Technol., Eindhoven ; Breyer, F. ; Randel, S. ; Gaudino, R.
more authors

The use of standard 1-mm core-diameter step-index plastic optical fiber (SI-POF) has so far been mainly limited to distances of up to 100 m and bit-rates in the order of 100 Mbit/s. By use of digital signal processing, transmission performance of such optical links can be improved. Among the different technical solutions proposed, a promising one is based on the use of discrete multitone (DMT) modulation, directly applied to intensity-modulated, direct detection (IM/DD) SI-POF links. This paper presents an overview of DMT over SI-POF and demonstrates how DMT can be used to improve transmission rate in such IM/DD systems. The achievable capacity of an SI-POF channel is first analyzed theoretically and then validated by experimental results. Additionally, first experimental demonstrations of a real-time DMT over SI-POF system are presented and discussed.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 11 )