Cart (Loading....) | Create Account
Close category search window

Probabilistic Reverse Nearest Neighbor Queries on Uncertain Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cheema, M.A. ; Sch. of Comput. Sci. & Eng., Univ. of New South Wales, Sydney, NSW, Australia ; Xuemin Lin ; Wei Wang ; Wenjie Zhang
more authors

Uncertain data are inherent in various important applications and reverse nearest neighbor (RNN) query is an important query type for many applications. While many different types of queries have been studied on uncertain data, there is no previous work on answering RNN queries on uncertain data. In this paper, we formalize probabilistic reverse nearest neighbor query that is to retrieve the objects from the uncertain data that have higher probability than a given threshold to be the RNN of an uncertain query object. We develop an efficient algorithm based on various novel pruning approaches that solves the probabilistic RNN queries on multidimensional uncertain data. The experimental results demonstrate that our algorithm is even more efficient than a sampling-based approximate algorithm for most of the cases and is highly scalable.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 4 )

Date of Publication:

April 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.