By Topic

Coordinating power oscillation damping control using wide area measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

In this paper, the potential benefits of a wide area control system for coordinated power oscillation damping control is investigated for the Nordic power system, with an overall motivation to facilitate increased power transfer limits. Several approaches to the design of power system stabilizers making use of phasor measurements from a wide area monitoring system are presented and compared with conventional stabilizers using locally measured control feedback signals. Linear analysis and time domain simulations illustrate the performance of these PSS designs when applied to selected SVCs in the Norwegian power transmission grid. Utilizing remote signals available recently through wide area monitoring systems enables selection of the best feedback control signal with highest modal observability of the modes of interest. Preliminary conclusions indicate that this leads to a higher performance and robustness of the power system stabilizer control.

Published in:

Power Systems Conference and Exposition, 2009. PSCE '09. IEEE/PES

Date of Conference:

15-18 March 2009