By Topic

Optimal firm wind capacity allocation to power systems with security constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Burke, D.J. ; Sch. of Electr., Electron. & Mech. Eng., Univ. Coll. Dublin, Dublin ; O'Malley, M.J.

Many countries have declared future renewable energy penetration targets. Wind power connection to power systems is delayed by limited transmission system capacity as attractive wind sites are often located in weakly designed transmission areas. Optimal use of existing transmission system resources should be made in the allocation of capacity connection permits. The volume of wind power connection applications and their power production statistical inter-dependencies suggest that they should be assessed in a collective probabilistic manner. This paper uses a sequential probabilistic load flow method in tandem with a linear programming computational geometry constraint redundancy approach to optimally allocate wind capacities given the transmission system capacity that is securely available.

Published in:

Power Systems Conference and Exposition, 2009. PSCE '09. IEEE/PES

Date of Conference:

15-18 March 2009