By Topic

Mars Reconnaissance Orbiter in-flight anomalies and lessons learned: An update

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Todd J. Bayer ; NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 264-535, Pasadena, 91109, USA

The Mars reconnaissance orbiter mission has as its primary objectives: advance our understanding of the current Mars climate, the processes that have formed and modified the surface of the planet and the extent to which water has played a role in surface processes; identify sites of possible aqueous activity indicating environments that may have been or are conducive to biological activity; and thus identify and characterize sites for future landed missions; and provide forward and return relay services for current and future Mars landed assets. MRO's crucial role in the long term strategy for Mars exploration requires a high level of reliability during its 5.4 year mission. This requires an architecture which incorporates extensive redundancy and cross-strapping. Because of the distances and hence light-times involved, the spacecraft itself must be able to utilize this redundancy in responding to time-critical failures. For cases where fault protection is unable to recognize a potentially threatening condition, either due to known limitations or software flaws, intervention by ground operations is required. These aspects of MRO's design were discussed in a previous paper. This paper provides an update to the original paper, describing MRO's significant in-flight anomalies over the past year, with lessons learned for redundancy and fault protection architectures and for ground operations.

Published in:

2009 IEEE Aerospace conference

Date of Conference:

7-14 March 2009