By Topic

Hazard Detection Methods for Lunar Landing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tye Brady ; Charles Stark Draper Laboratory, 555 Technology Square, MS27, Cambridge, MA 02139, USA ; Edward Robertson ; Chirold Epp ; Stephen Paschall
more authors

The methods and experiences from the Apollo Program are fundamental building blocks for the development of lunar landing strategies for the constellation program. Each of the six lunar landing Apollo missions landed under near ideal lighting conditions. The astronauts visually performed terrain relative navigation while looking out of windows, and were greatly aided by external communication and well lit scenes. As the LM approached the landing site, the astronauts performed visual hazard detection and avoidance, also under near-ideal lighting conditions. The astronauts were looking out of the windows trying to the best of their ability to avoid rocks, slopes, and craters and find a safe landing location. NASA has expressed a desire for global lunar access for both crewed and robotic sortie lunar exploration missions [2] [3]. Early NASA architecture studies have identified the lunar poles as desirable locations for early lunar missions. These polar missions provide less than ideal lighting conditions that will significantly affect the way a crewed vehicle is to land at such locales. Consequently, a variety of hazard identification methods should be considered for use by the crew to ensure a high degree of safety. This paper discusses such identification methods applicable to the poorly lit polar lunar environment, better ensuring global access for the soon to be designed lunar lander vehicle (LLV).

Published in:

2009 IEEE Aerospace conference

Date of Conference:

7-14 March 2009