Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

p-Sensitivity: A Semantic Privacy-Protection Model for Location-based Services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhen Xiao ; Sch. of Inf., Renmin Univ. of China, Beijing ; Jianliang Xu ; Xiaofeng Meng

Several methods have been proposed to support location-based services without revealing mobile users' privacy information. There are two types of privacy concerns in location-based services: location privacy and query privacy. Existing work, based on location k-anonymity, mainly focused on location privacy and are insufficient to protect query privacy. In particular, due to lack of semantics, location k-anonymity suffers from query homogeneity attack. In this paper, we introduce p-sensitivity, a novel privacy-protection model that considers query diversity and semantic information in anonymizing user locations. We propose a PE-tree for implementing the p-sensitivity model. Search algorithms and heuristics are developed to efficiently find the optimal p-sensitivity anonymization in the tree. Preliminary experiments show that p-sensitivity provides high-quality services without compromising users' query privacy.

Published in:

Mobile Data Management Workshops, 2008. MDMW 2008. Ninth International Conference on

Date of Conference:

27-30 April 2008