By Topic

Subspace Pursuit for Compressive Sensing Signal Reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Dai ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL ; Olgica Milenkovic

We propose a new method for reconstruction of sparse signals with and without noisy perturbations, termed the subspace pursuit algorithm. The algorithm has two important characteristics: low computational complexity, comparable to that of orthogonal matching pursuit techniques when applied to very sparse signals, and reconstruction accuracy of the same order as that of linear programming (LP) optimization methods. The presented analysis shows that in the noiseless setting, the proposed algorithm can exactly reconstruct arbitrary sparse signals provided that the sensing matrix satisfies the restricted isometry property with a constant parameter. In the noisy setting and in the case that the signal is not exactly sparse, it can be shown that the mean-squared error of the reconstruction is upper-bounded by constant multiples of the measurement and signal perturbation energies.

Published in:

IEEE Transactions on Information Theory  (Volume:55 ,  Issue: 5 )