Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

The Universal LZ77 Compression Algorithm Is Essentially Optimal for Individual Finite-Length N -Blocks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ziv, J. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa

Consider the case where consecutive blocks of N letters of a semi-infinite individual sequence X over a finite alphabet are being compressed into binary sequences by some one-to-one mapping. No a priori information about X is available at the encoder, which must therefore adopt a universal data-compression algorithm. It is known that there exist a number of asymptotically optimal universal data compression algorithms (e.g., the Lempel-Ziv (LZ) algorithm, context tree algorithm and an adaptive Hufmann algorithm) such that when successively applied to N-blocks then, the best error-free compression for the particular individual sequence X is achieved as N tends to infinity. The best possible compression that may be achieved by any universal data compression algorithm for finite N-blocks is discussed. Essential optimality for the compression of finite-length sequences is defined. It is shown that the LZ77 universal compression of N-blocks is essentially optimal for finite N-blocks. Previously, it has been demonstrated that a universal context tree compression of N blocks is essentially optimal as well.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 5 )