By Topic

The Error Exponent of Variable-Length Codes Over Markov Channels With Feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The error exponent of Markov channels with feedback is studied in the variable-length block-coding setting. Burnashev's classic result is extended to finite-state ergodic Markov channels. For these channels, a single-letter characterization of the reliability function is presented, under the assumption of full causal output feedback, and full causal observation of the channel state both at the transmitter and at the receiver side. Tools from stochastic control theory are used in order to treat channels with intersymbol interference (ISI). Specifically, the convex-analytic approach to Markov decision processes is adopted in order to handle problems with stopping time horizons induced by variable-length coding schemes.

Published in:

Information Theory, IEEE Transactions on  (Volume:55 ,  Issue: 5 )