By Topic

Denoising by Averaging Reconstructed Images: Application to Magnetic Resonance Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianhua Luo ; Coll. of Life Sci. & Technol., Shanghai Jiao Tong Univ., Shanghai ; Yuemin Zhu ; Magnin, I.E.

A novel denoising approach is proposed that is based on averaging reconstructed images. The approach first divides the spectrum of the image to be denoised into different parts. From every such partial spectrum is then reconstructed an image using a 2-D singularity function analysis model. By expressing each of the reconstructed images as the sum of the same noise-free image and a different smaller noise, the denoising is achieved through averaging the reconstructed images. The theoretical formulation and experimental results on both simulated and real images consistently demonstrated that the proposed approach can efficiently denoise while maintaining high image quality, and presents significant advantages over conventional denoising methods.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 3 )