By Topic

Model-Reference Control Approach to Obstacle Avoidance for a Human-Operated Mobile Robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Uchiyama, N. ; Dept. of Mech. Eng., Toyohashi Univ. of Technol., Toyohashi, Japan ; Hashimoto, T. ; Sano, S. ; Takagi, S.

Because the obstacle-avoidance function is indispensable for providing the safe and easy operation of human-operated robotic systems, this paper deals with the obstacle-avoidance control for a human-operated mobile robot in unknown environments. A general type of two-wheeled mobile robot with inexpensive distance sensors to detect obstacles is considered. Because the robot cannot move in arbitrary directions due to a nonholonomic constraint, we propose a model-reference control approach, in which a reference model generates the desired trajectory to satisfy the nonholonomic constraint, and the robot follows the desired trajectory. The reference model has the steering-like and brake-like functions that are adjusted according to the distance-sensor information. The stability of the proposed control system is analyzed with a linear model. The effectiveness of the proposed method is confirmed by experiments in which several operators handle the robot in an environment with obstacles.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 10 )