By Topic

Cross-Layer Design of ASE-Noise-Limited Island-Based Translucent Optical Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gangxiang Shen ; Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC ; Sorin, W.V. ; Tucker, RodneyS.

This paper considers the design and dimensioning of translucent optical networks based on the concept of optical transparent islands. In systems with dispersion compensation, amplified spontaneous emission (ASE) noise becomes a dominant physical-layer impairment in constraining the maximal transparent reach limit of a lightpath. Taking this dominant impairment into account, an efficient transparent island division algorithm is proposed to divide a large transport network into a few optical transparent islands and to minimize the total number of opaque island-border nodes. Optimization models for translucent network dimensioning are presented to maximize served traffic demand given certain network capacity and to minimize the required wavelength capacity given a certain traffic demand matrix. Simulation studies show that the proposed transparent island division approach and network-dimensioning optimization models require only 25% opaque nodes to overcome the constraint of transparent reach limit and achieve performance as good as that of a more expensive 100% opaque network.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 11 )