By Topic

A Robust Position and Force Control Strategy for 7-DOF Redundant Manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Patel, R.V. ; Univ. of Western Ontario, London, ON, Canada ; Talebi, H.A. ; Jayender, J. ; Shadpey, F.

This paper is concerned with robust position and contact force control for 7-DOF redundant robot arms. An outer-inner loop controller, called the augmented hybrid impedance control scheme is developed. A 6-DOF force/torque sensor is used to measure the interaction forces. These are fed back to the outer-loop controller that implements either a force or an impedance controller in each of the 6 DOF of the tool frame. The force controller is provided with a force set point, and desired inertia and damping are introduced in the force control loop to improve transient performance. The inner loop consists of a Cartesian-level potential difference controller, a redundancy resolution scheme at the acceleration level, and a joint-space inverse dynamics controller. Experimental results for two 7-DOF robot arms (redundant, dextrous, isotropically enhanced, seven-turning pair robot (REDIESTRO) and Mitsubishi PA10-7C) are given to illustrate the performance of the force control strategy. A successful application of the proposed scheme to a surface cleaning task is described using the REDIESTRO, while position and force tracking experiments are described for the Mitsubishi PA10-7C robot.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:14 ,  Issue: 5 )