By Topic

An L-Band Ocean Geophysical Model Function Derived From PALSAR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Isoguchi, O. ; Earth Obs. Res. Center, Japan Aerosp. Exploration Agency, Tsukuba ; Shimada, M.

This paper examines L-band normalized radar cross section (NRCS) dependence on ocean surface wind. More than 90 000 match-ups, each consisting of the L-band HH NRCS, incidence angles, wind speeds, and wind directions, were collected from the Phased-Array L-Band Synthetic Aperture Radar (PALSAR) and scatterometer wind vectors. Based on the match-ups, the L-band HH NRCS dependence on incidence angle and wind vector is modeled for 0-20-m/s wind speeds and 17deg-43deg incidence angles. The derived relation indicates that the wind sensitivity of the L-band NRCS is less than that of the C-band at moderate winds and large incidence angles, whereas comparable at stronger winds ((>10 m/s) and small incidence angles. The upwind-crosswind difference is amplified in the 10-15-m/s range followed by an almost zero amplitude from 4 to 8 m/s, which represents a clear phase shift with the C-band VV and Ku-band HH models. Wind speeds are then estimated from the match-ups, based on the derived model function. A comparison with the reference scatterometer winds reveals a 0.05-m/s bias and a 1.85-m/s root mean square error, where crosswind data give rise to large errors due to low wind sensitivity at wind speeds of around 10 m/s, particularly at large incidence angles. The L-band NRCS behavior in strong winds (>20 m/s), at which the C-band is saturated, was not determined in the current model due to the limited number of the match-ups.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 7 )