By Topic

Fabrication Methods and Performance of Low-Permeability Microfluidic Components for a Miniaturized Wearable Drug Delivery System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Mescher, M.J. ; Charles Stark Draper Lab., Cambridge, MA ; Swan, E. ; Fiering, J. ; Holmboe, M.E.
more authors

In this paper, we describe low-permeability components of a microfluidic drug delivery system fabricated with versatile micromilling and lamination techniques. The fabrication process uses laminate sheets which are machined using XY milling tables commonly used in the printed-circuit industry. This adaptable platform for polymer microfluidics readily accommodates integration with silicon-based sensors, printed-circuit, and surface-mount technologies. We have used these methods to build components used in a wearable liquid-drug delivery system for in vivo studies. The design, fabrication, and performance of membrane-based fluidic capacitors and manual screw valves provide detailed examples of the capability and limitations of the fabrication method. We demonstrate fluidic capacitances ranging from 0.015 to 0.15 muL/kPa, screw valves with on/off flow ratios greater than 38000, and a 45times reduction in the aqueous fluid loss rate to the ambient due to permeation through a silicone diaphragm layer.

Published in:

Microelectromechanical Systems, Journal of  (Volume:18 ,  Issue: 3 )