Cart (Loading....) | Create Account
Close category search window

Synthesis and magnetic properties of Cu doped ZnO nanorods via radio frequency plasma deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wu, Z.F. ; Department of physics, Suzhou University, Suzhou 215006, People’s Republic of China ; Wu, X.M. ; Zhuge, L.J. ; Chen, X.M.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Well-aligned Cu doped ZnO nanorods were synthesized by simple radio frequency plasma deposition in the absence of extra catalysts. The synthesized nanorods having a typical average diameter of about 60 nm, were about 700 nm in length and well aligned along the normal direction of the substrate. Magnetic measurements indicate that the nanorods are ferromagnetic at room temperature. The presence of considerable oxygen vacancies in the nanorods does allow possible defect mediated mechanisms (e.g., bound magnetic polarons) for mediating exchange coupling of the dopant Cu ions resulting in room temperature ferromagnetism.

Published in:

Applied Physics Letters  (Volume:93 ,  Issue: 2 )

Date of Publication:

Jul 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.