Cart (Loading....) | Create Account
Close category search window
 

Swept Volume Approximation of Polygon Soups

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Himmelstein, J.C. ; Kineo CAM, Labege, France ; Ferre, E. ; Laumond, J.-P.

We present a fast algorithm to approximate the swept volume (SV) boundary of arbitrary polygon soup models. Despite the extensive research on calculating the volume swept by an object along a trajectory, the efficient algorithms described have imposed constraints on both the trajectories and geometric models. By proposing a general algorithm that handles flat surfaces as well as volumes and disconnected objects, we allow SV calculation without resorting to preprocessing mesh repair nor deforming offsets. This is of particular interest in the domain of product lifecycle management (PLM), which deals with industrial computer aided design (CAD) models that are malformed more often than not. We incorporate the bounded distance operator used in path planning to efficiently sample the trajectory while controlling the total error. We develop a triangulation scheme that draws on the unique data set created by an advancing front level-set method to tessellate the SV boundary in linear time. We analyze its performance, and demonstrate its effectiveness both theoretically and on real cases taken from PLM.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:7 ,  Issue: 1 )

Date of Publication:

Jan. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.