Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A Novel Template Reduction Approach for the K -Nearest Neighbor Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fayed, H.A. ; Dept. of Eng. Math. & Phys., Cairo Univ., Cairo ; Atiya, A.F.

The K-nearest neighbor (KNN) rule is one of the most widely used pattern classification algorithms. For large data sets, the computational demands for classifying patterns using KNN can be prohibitive. A way to alleviate this problem is through the condensing approach. This means we remove patterns that are more of a computational burden but do not contribute to better classification accuracy. In this brief, we propose a new condensing algorithm. The proposed idea is based on defining the so-called chain. This is a sequence of nearest neighbors from alternating classes. We make the point that patterns further down the chain are close to the classification boundary and based on that we set a cutoff for the patterns we keep in the training set. Experiments show that the proposed approach effectively reduces the number of prototypes while maintaining the same level of classification accuracy as the traditional KNN. Moreover, it is a simple and a fast condensing algorithm.

Published in:

Neural Networks, IEEE Transactions on  (Volume:20 ,  Issue: 5 )