By Topic

Performance of Caching Algorithms for IPTV On-Demand Services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Danny De Vleeschauwer ; Bell Labs., Alcatel-Lucent Bell, Antwerp, Belgium ; Koen Laevens

Due to its native return channel and its ability to easily address each user individually an IPTV system is very well suited to offer on-demand services. Those services are becoming more popular as there is an undeniable trend that users want to watch the offered content when and where it suits them best. Because multicast can no longer be relied upon for such services, as was the case when offering linear-programming TV, this trend risks to increase the traffic unwieldy over some parts of the IPTV network unless caches are deployed in strategic places within it. Since caches are limited in size and the popularity of on-demand content is volatile (i.e., changing over time), it is not straightforward to decide which objects to cache at which moment in time. This paper introduces and studies a caching algorithm that tracks the popularity of objects to make intelligent caching decisions. We will show that when its parameters are set equal or close to their optimal values this algorithm outperforms traditional algorithms as LRU (least-recently used) and LFU (least-frequently used). After a generic study of the algorithm fed by a user demand model that takes the volatility of the objects into account we will discuss two particular cases of an on-demand service, video-on-demand and catch-up TV, for each of which we give guidelines on how to dimension their associated caches.

Published in:

IEEE Transactions on Broadcasting  (Volume:55 ,  Issue: 2 )