By Topic

The contribution of grain boundary barriers to the electrical conductivity of titanium oxide thin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Martin, Nicolas ; Institut FEMTO-ST, 6174 CNRS, Université de Franche-Comté ENSMM UTBM 26, Chemin de l’épitaphe, 25030 Besancon Cedex, France ; Besnard, Aurelien ; Sthal, F. ; Vaz, Filipe
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2970034 

Titanium oxide thin films were prepared by reactive magnetron sputtering. The reactive gas pulsing process was implemented to control the oxygen injection in the deposition process and, consequently, to tune the oxygen concentration in the films from pure titanium to stoichiometric TiO2, maintaining a homogeneous in-depth concentration. The electrical conductivity of the films was investigated as a function of the oxygen injection time, the metalloid concentration and temperature, in the range 90–600 K. The curved Arrhenius plots of the conductivity were examined taking into account the grain boundary limited transport model of Werner (J. H. Werner [Solid State Phenom. 37–38, 213 (1994)]). The grain barrier heights were found to depend significantly on the oxygen supplied into the deposition process and thus, on the oxygen-to-titanium atomic ratio in the films. The analysis as a function of temperature showed that the conduction mechanism in the coatings was not solely limited by the oxygen-to-titanium atomic ratio, but also by the grain boundary scattering.

Published in:

Applied Physics Letters  (Volume:93 ,  Issue: 6 )