Cart (Loading....) | Create Account
Close category search window

Multimodal system for harvesting magnetic and mechanical energy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shuxiang Dong ; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA ; Junyi Zhai ; Li, J.F. ; Viehland, D.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

In this letter, we investigate a multimodal system for simultaneous energy harvesting from stray magnetic and mechanical energies by combining magnetoelectric and piezoelectric effects. The system consists of a cantilever beam with tip mass and a magnetoelectric laminate attached in the center of the beam. At 2 Oe magnetic field and mechanical vibration amplitude of 50mg, both at frequency of 20 Hz, the system was found to generate open circuit output voltage of 8 VP.P.. An equivalent circuit model is proposed that predicts a summation effect for both mechanical and magnetic energies.

Published in:

Applied Physics Letters  (Volume:93 ,  Issue: 10 )

Date of Publication:

Sep 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.