Cart (Loading....) | Create Account
Close category search window

Synthesis and multiferroic properties of Bi0.8A0.2FeO3 (A=Ca,Sr,Pb) ceramics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Bi1-xAxFeO3 ceramics (A=Ca,Sr,Pb) were sintered by conventional mixed oxide route. The crystallographic structure of all samples is characterized by the rhombohedral symmetry (space group R3c). The existence of switchable ferroelectric polarization is verified by piezoresponse force microscopy that is proven to be a useful technique in semi-insulating ferroelectrics. Magnetic properties of Ca and Sr-doped ceramics are found to reproduce the antiferromagnetic behavior of undoped BiFeO3 without any enhancement of the magnetization. On the contrary, Pb-doped compound demonstrates appearance of a weak ferromagnetism. It is thus shown that Pb doping of BiFeO3 is a promising way for preparing multiferroic materials.

Published in:

Applied Physics Letters  (Volume:90 ,  Issue: 24 )

Date of Publication:

Jun 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.