Cart (Loading....) | Create Account
Close category search window

Nanowire metal-oxide-semiconductor field effect transistor with doped epitaxial contacts for source and drain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Cohen, G.M. ; IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 ; Rooks, M.J. ; Chu, J.O. ; Laux, S.E.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The authors report the fabrication of a p-field effect transistor (FET) and an n-FET with a silicon nanowire channel and doped silicon source and drain regions. The silicon nanowires were synthesized by the vapor-liquid-solid method. For p-FETs the source and drain regions were formed by adding boron doped silicon to the unintentionally doped nanowire body at predefined locations using in situ doped silicon epitaxy. For n-FETs the epitaxial source and drain regions were grown undoped and were later implanted with P and As. The measured Id-Vg characteristics of the devices exhibited unipolar transport, while reference FETs made with nanowires from the same batch but with Schottky (metal) contacts exhibited ambipolar characteristics.

Published in:

Applied Physics Letters  (Volume:90 ,  Issue: 23 )

Date of Publication:

Jun 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.