By Topic

Real-time monitoring of organic vapor-phase deposition of molecular thin films using high-pressure reflection high-energy electron diffraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.2736274 

The crystalline thin film growth of the organic material, copper phthalocyanine (CuPc), by organic vapor-phase deposition (OVPD) is studied using high-pressure reflection high-energy electron diffraction (HP-RHEED). In situ growth of this material was monitored, in real time, on both highly oriented pyrolytic graphite and native SiO2 on Si(100) substrates. The growth of the first several monolayers on both substrates was found to be independent of the growth conditions; however, the crystalline texture of thicker films was controlled through changes in the substrate temperature and deposition rate. Higher substrate temperatures lead to an increase in crystalline ordering for growth on both substrates. This work shows that HP-RHEED is a powerful tool for real-time monitoring of growth morphology in the low-vacuum OVPD environment, ultimately leading to in situ control of thin film crystalline order.

Published in:

Applied Physics Letters  (Volume:90 ,  Issue: 18 )