By Topic

ST-T segment change recognition using artificial neural networks and principal component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. Silipo ; Dept. of Syst. & Inf., Florence Univ., Italy ; P. Laguna ; C. Narchesi ; R. G. Mark

Any ST-T segment was here represented by using the principal component analysis, or Karhunen-Loeve Transform (KLT). A representative KL basis set was built from a database containing more than 97000 normal and abnormal ST-T segments. So it was possible to concentrate the 90% of the ST-T signal energy in the first KL coefficients. For the evaluation, the ST-T European Database was chosen, because of its large amount of ischemic episodes. The baseline was removed by using a cubic spline and an adaptive filter was applied in order to improve the signal-to-noise ratio in the final KL series, delivering an improvement of about 10 dB. Then a 3-layers feedforward neural network trained with backpropagation, was applied to the KL series to recognize ST-T level changes. Each input pattern consisted of 28 features, representing 7 ST-T segments, each one described by means of its first 4 KL coefficients. 3 output units were designed, one to describe ST depression, one ST elevation, and one to represent artefacts. The use of principal component analysis and of artificial neural networks allowed us to obtain a sensitivity of 77% and a positive predictive accuracy of 86% on the test set.

Published in:

Computers in Cardiology 1995

Date of Conference:

10-13 Sept. 1995