Cart (Loading....) | Create Account
Close category search window

InGaN/GaN nanostripe grown on pattern sapphire by metal organic chemical vapor deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ko, T.S. ; Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 30050, Taiwan, Republic of China ; Wang, T.C. ; Gao, R.C. ; Lee, Y.J.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The authors have used metal organic chemical vapor deposition to grow InGaN/GaN multiple quantum well (MQW) nanostripes on trapezoidally patterned c-plane sapphire substrates. Transmission electron microscopy (TEM) images clearly revealed that the MQWs grew not only on the top faces of the trapezoids but also on both lateral side facets along the [0001] direction defined by the selected area electron diffraction pattern. Meanwhile, dislocations that stretched from the interfaces between the GaN and the substrates did not pass through the MQWs in the TEM observation. Microphotoluminescence measurements verified that the luminescence efficiency from a single nanostripe was enhanced by up to fivefold relative to those of regular thin film MQW structures. Observation of the cathodoluminescence identified the areas of light emission and confirmed that enhanced emission occurred from the nanostripes.

Published in:

Applied Physics Letters  (Volume:90 ,  Issue: 1 )

Date of Publication:

Jan 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.