Cart (Loading....) | Create Account
Close category search window

Improved luminance intensity of InGaN–GaN light-emitting diode by roughening both the p-GaN surface and the undoped-GaN surface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Peng, Wei Chih ; Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan 300, Republic of China ; Wu, Yew Chung Sermon

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The InGaN–GaN epitaxial films were grown by low-pressure metal-organic chemical vapor deposition on a sapphire substrate, and then the light-emitting diode (LED) with double roughened (p-GaN and undoped-GaN) surfaces was fabricated by surface-roughening, wafer-bonding, and laser lift-off technologies. It was found that the front side luminance intensity of double roughened LED was 2.77 times higher than that of the conventional LED at an injection current of 20 mA. The backside luminance intensity was 2.37 times higher than that of the conventional LED. This is because the double roughened surfaces can provide photons multiple chances to escape from the LED surface, and redirect photons, which were originally emitted out of the escape cone, back into the escape cone.

Published in:

Applied Physics Letters  (Volume:89 ,  Issue: 4 )

Date of Publication:

Jul 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.