Cart (Loading....) | Create Account
Close category search window

UV-modulated one-dimensional photonic-crystal resonator for visible lights

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Yang, S.Y. ; Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan ; Yang, P.H. ; Liao, C.D. ; Chieh, J.J.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The one-dimensional photonic-crystal (A/SiO2)6/ZnO/(SiO2/A)6 resonators at visible lights are fabricated and characterized, where A may be ZnO or indium tin oxide. Owing to the absorption of ultraviolet (UV) light by the ZnO layers, the refractive index of ZnO layers is changed temporally. This fact led to a temporary shifting of the forbidden band and the resonant mode of the resonator under UV irradiation. Besides, via adjusting the thickness of the ZnO defect layer, the resonant wavelength is manipulated. These experimental data show good consistence with simulated results.

Published in:

Applied Physics Letters  (Volume:89 ,  Issue: 23 )

Date of Publication:

Dec 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.