By Topic

The chirplet transform: physical considerations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mann, S. ; MIT, Cambridge, MA, USA ; Haykin, Simon

We consider a multidimensional parameter space formed by inner products of a parameterizable family of chirp functions with a signal under analysis. We propose the use of quadratic chirp functions (which we will call q-chirps for short), giving rise to a parameter space that includes both the time-frequency plane and the time-scale plane as 2-D subspaces. The parameter space contains a “time-frequency-scale volume” and thus encompasses both the short-time Fourier transform (as a slice along the time and frequency axes) and the wavelet transform (as a slice along the time and scale axes). In addition to time, frequency, and scale, there are two other coordinate axes within this transform space: shear in time (obtained through convolution with a q-chirp) and shear in frequency (obtained through multiplication by a q-chirp). Signals in this multidimensional space can be obtained by a new transform, which we call the “q-chirplet transform” or simply the “chirplet transform”. The proposed chirplets are generalizations of wavelets related to each other by 2-D affine coordinate transformations (translations, dilations, rotations, and shears) in the time-frequency plane, as opposed to wavelets, which are related to each other by 1-D affine coordinate transformations (translations and dilations) in the time domain only

Published in:

Signal Processing, IEEE Transactions on  (Volume:43 ,  Issue: 11 )