By Topic

ID3-derived fuzzy rules and optimized defuzzification for handwritten numeral recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zheru Chi ; Dept. of Electron. Eng., Hong Kong Polytech., Hung Hom, Hong Kong ; Hong Yan

Presents a technique to produce fuzzy rules based on the ID3 approach and to optimize defuzzification parameters by using a two-layer perceptron. The technique overcomes the difficulties in a conventional syntactic approach to handwritten character recognition, including problems of choosing a starting or reference point, scaling, and learning by machines. The authors' technique provides: a way to produce meaningful and simple fuzzy rules; a method to fuzzify ID3-derived rules to deal with uncertain, noisy, or fuzzy data; and a framework to incorporate fuzzy rules learned from the training data and those extracted from human recognition experience. The authors' experimental results on NIST Special Database 3 show that the technique out-performs the straight forward ID3 approach. Moreover, ID3-derived fuzzy rules can be combined with an optimized nearest neighbor classifier, which uses intensity features only, to achieve a better classification performance than either of the classifiers. The combined classifier achieves a correct classification rate of 98.6% on the test set

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:4 ,  Issue: 1 )