By Topic

Combined multiuser detection and diversity reception for wireless CDMA systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Zvonar, Z. ; Analog Devices Inc., Wilmington, MA, USA

Code division multiple-access (CDMA) techniques using interference cancellation are being explored for the capacity increase in third-generation universal mobile telecommunications systems. However, multipath fading is a major constraint on the performance of wireless CDMA systems, with multipath propagation worsening the effects of multiple-access interference, and fading on propagation paths leading to the near far problem. Multiuser detection, exploiting the knowledge of other users to cancel multiple-access interference, has the capability of eliminating the near far problem and providing a significant capacity increase in CDMA systems. On the other hand, diversity techniques effectively combat the fading effects of the channel. This paper investigates multiuser receivers that combine explicit antenna diversity, RAKE multipath diversity, and multipath decorrelating detection. Both coherent reception with maximal-ratio combining and differentially coherent reception with equal-gain combining are analyzed. The results demonstrate a significant increase in up-link capacity over the conventional RAKE receiver, at the expense of complexity. In the case of limited receiver complexity, where the number of correlators is less than the number of resolvable paths at the RAKE front-end, antenna diversity is shown to be effective in reducing residual multiple-access interference

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:45 ,  Issue: 1 )