By Topic

New bounds on the expected length of one-to-one codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Blundo, C. ; Dipartimento di Inf. ed Applicazioni, Salerno Univ., Italy ; De Prisco, R.

We provide new bounds on the expected length L of a binary one-to-one code for a discrete random variable X with entropy H. We prove that L⩾H-log(H+1)-Hlog(1+1/H). This bound improves on previous results. Furthermore, we provide upper bounds on the expected length of the best code as function of H and the most likely source letter probability

Published in:

Information Theory, IEEE Transactions on  (Volume:42 ,  Issue: 1 )