By Topic

Optimal biphase sequences with large linear complexity derived from sequences over Z4

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Udaya, P. ; Central Res. Lab., Bangalore, India ; Siddiqi, M.

New families of biphase sequences of size 2r-1+1, r being a positive integer, are derived from families of interleaved maximal-length sequences over Z4 of period 2(2r-1). These sequences have applications in code-division spread-spectrum multiuser communication systems. The families satisfy the Sidelnikov bound with equality on θmax, which denotes the maximum magnitude of the periodic cross-correlation and out-of-phase autocorrelation values. One of the families satisfies the Welch bound on θmax with equality. The linear complexity and the period of all sequences are equal to r(r+3)/2 and 2(2 r-1), respectively, with an exception of the single m-sequence which has linear complexity r and period 2r-1. Sequence imbalance and correlation distributions are also computed

Published in:

Information Theory, IEEE Transactions on  (Volume:42 ,  Issue: 1 )