By Topic

An inequality on guessing and its application to sequential decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Arikan, E. ; Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey

Let (X,Y) be a pair of discrete random variables with X taking one of M possible values, Suppose the value of X is to be determined, given the value of Y, by asking questions of the form “Is X equal to x?” until the answer is “Yes”. Let G(x|y) denote the number of guesses in any such guessing scheme when X=x, Y=y. We prove that E[G(X|Y)ρ]⩾(1+lnM)Σy xPX,Y(x,y)1/1+ρ] 1+ρ for any ρ⩾0. This provides an operational characterization of Renyi's entropy. Next we apply this inequality to the estimation of the computational complexity of sequential decoding. For this, we regard X as the input, Y as the output of a communication channel. Given Y, the sequential decoding algorithm works essentially by guessing X, one value at a time, until the guess is correct. Thus the computational complexity of sequential decoding, which is a random variable, is given by a guessing function G(X|Y) that is defined by the order in which nodes in the tree code are hypothesized by the decoder. This observation, combined with the above lower bound on moments of G(X|Y), yields lower bounds on moments of computation in sequential decoding. The present approach enables the determination of the (previously known) cutoff rate of sequential decoding in a simple manner; it also yields the (previously unknown) cutoff rate region of sequential decoding for multiaccess channels. These results hold for memoryless channels with finite input alphabets

Published in:

Information Theory, IEEE Transactions on  (Volume:42 ,  Issue: 1 )