By Topic

Simulation of random processes and rate-distortion theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Steinberg, Y. ; Dept. of Electr. Eng., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel ; Verdu, S.

We study the randomness necessary for the simulation of a random process with given distributions, on terms of the finite-precision resolvability of the process. Finite-precision resolvability is defined as the minimal random-bit rate required by the simulator as a function of the accuracy with which the distributions are replicated. The accuracy is quantified by means of various measures: variational distance, divergence, Orstein (1973), Prohorov (1956) and related measures of distance between the distributions of random process. In the case of Ornstein, Prohorov and other distances of the Kantorovich-Vasershtein type, we show that the finite-precision resolvability is equal to the rate-distortion function with a fidelity criterion derived from the accuracy measure. This connection leads to new results on nonstationary rate-distortion theory. In the case of variational distance, the resolvability of stationary ergodic processes is shown to equal entropy rate regardless of the allowed accuracy. In the case of normalized divergence, explicit expressions for finite-precision resolvability are obtained in many cases of interest; and connections with data compression with minimum probability of block error are shown

Published in:

Information Theory, IEEE Transactions on  (Volume:42 ,  Issue: 1 )